45 research outputs found

    Impact of Sleep and Circadian Disruption on Energy Balance and Diabetes: A Summary of Workshop Discussions

    Get PDF
    A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice

    Wearable Technologies for Developing Sleep and Circadian Biomarkers: A Summary of Workshop Discussions

    No full text
    The \u27International Biomarkers Workshop on Wearables in Sleep and Circadian Science\u27 was held at the 2018 SLEEP Meeting of the Associated Professional Sleep Societies. The workshop brought together experts in consumer sleep technologies and medical devices, sleep and circadian physiology, clinical translational research, and clinical practice. The goals of the workshop were: 1) characterize the term wearable for use in sleep and circadian science, and identify relevant sleep and circadian metrics for wearables to measure; 2) assess the current use of wearables in sleep and circadian science; 3) identify current barriers for applying wearables to sleep and circadian science; and 4) identify goals and opportunities for wearables to advance sleep and circadian science. For the purposes of biomarker development in the sleep and circadian fields, the workshop included the terms wearables , nearables , and ingestibles . Given the state of the current science and technology, the limited validation of wearable devices against gold standard measurements is the primary factor limiting large-scale use of wearable technologies for sleep and circadian research. As such, the workshop committee proposed a set of best practices for validation studies and guidelines regarding how to choose a wearable device for research and clinical use. To complement validation studies, the workshop committee recommends the development of a public data repository for wearable data. Finally, sleep and circadian scientists must actively engage in the development and use of wearable devices to maintain the rigor of scientific findings and public health messages based on wearable technology

    Sleep and circadian disruption and the gut microbiome-possible links to dysregulated metabolism

    No full text
    Insufficient sleep and circadian misalignment are associated with adverse metabolic health outcomes. Alterations in gut microbial diversity occur with insufficient sleep and circadian misalignment, which can lead to modifications in microbial structure and function. Changes in microbially produced and modified metabolites such as short chain fatty acids and secondary bile acids may contribute to chronic inflammation, positive energy balance and endocrine changes, and represent potential mechanisms linking insufficient sleep and circadian misalignment with metabolic dysregulation. Literature primarily from the last two years is reviewed here, examining the impact of sleep and circadian rhythms and their disruption on the gut microbiome in human and non-human models, with an emphasis on the hypothesis that the altered gut microbiome may be one pathway by which insufficient sleep and circadian misalignment dysregulate metabolism
    corecore